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Abstract  

The structure and magnetic properties of intermetallic phases synthesised from RnFes4Tis (R-=Nd, Sm) by mechanical 
alloying and heat treatment have been studied. The phases present were found to depend on the heat treatment temperature. 
For both NdnFe84Tis and SmnFe84Tis the 1-17 phase formed at low temperatures and the higher temperatures resulted in 
the formation of the 2-19 phase. With SmnFes4Tis the 2-17 phase formed at temperatures above 850 °C. Nitrided 1-7, 2-19 
and 2-17 phases of SmnFe84Tis were all found to exhibit hard magnetic properties, with coercivities exceeding 25 kOe being 
exhibited by the nitrided Sm2(Fe,Ti)a7 phase. 
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1. Introduction 

A ternary phase of nominal composition R2(Fe,Ti)a9 
with a monoclinic structure has been recently identified 
by Collocott et al. [1] and Cadogan and coworkers [2,3]. 
Single-phase Nd2(Fe,Ti)19 has been prepared for com- 
positions of Nd9.4Fe9o.6_xTi x with 3.8~<x<5.3 by arc 
melting and annealing [3]. The 2-19 phase has an 
intermediate structure between the ThzZn17 (2-17 
phase) and the ThMnlz (1-12) structures [1--4]. The 
2-17 phase is formed by the replacement of one-third 
of the Ca sites in the hexagonal CaCu5 structure with 
a pair of transition metal atoms (dumb-bell), and the 
1-12 phase by the replacement of one-half of the Ca 
sites. For the 2-19 phase, the fraction of Ca sites 
replaced is 0.4, corresponding to the formula R2(Fe,Ti)I 9 
[21. 

Recent results [4,5] have shown that nitriding of the 
2-19 phase increases the Curie temperature similar to 
that previously reported for the 1-7 and 2-17 phases. 
The Sm2(Fe,Ti)a9 nitride possesses a room temperature 
magnetization of 1.4-1.5 T and an anisotropic field of 
about 14 T [4,5] and is thus an interesting candidate 
material for permanent magnets. Mechanical alloying 
has been previously used to synthesize hard magnetic 
materials, including NdiFel4B [6], SmCo5 [7] and 
Sm2Fe17N, [8]. In this paper we report the results of 
a study of the structure and magnetic properties of 

mechanically alloyed 2-19 phases, Nd2(Fe,Ti)a 9 and 
Sm2(Fe,Ti)19, with and without nitriding. 

2. Experimental details 

The starting materials used in this study were powders 
of Nd, Sm, Fe and Ti of 99.9% purity and having the 
starting composition RenFea4Tis. The rare earth content 
of the starting material is about 10% higher than that 
(about 10%) required for formation of the single 2-19 
phase by arc melting and subsequent annealing [3] to 
compensate for losses due to oxidation and vaporization. 
Mechanical alloying was carried out in a Spex 8000 
mill-mixer with hardened steel vials and 12 mm diameter 
hardened steel balls. The ball to powder mass ratio 
was 10:1 and the milling was carried out for 24 h. 
Loading of the vials and all subsequent powder handling 
were carried out in a high purity argon-filled glove- 
box. 

Following milling the powder was pressed into cyl- 
inders of 5 mm diameter and length of about 3 mm 
and heat treated under a vacuum of 10 -6 mbar for 1 
h at temperatures in the range from 600 to 1100 °C. 
Nitriding was carried out under 1 atm of high purity 
N2 at temperatures between 400 and 450 °C. 

The samples were characterized using X-ray dif- 
fraction (Siemens D5000) and M6ssbauer spectroscopy 
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(Canberra-Packard 250). The magnetic measurements 
were carried out at room temperature using a vibrating 
sample magnetometer (VSM3001, Oxford Instrument 
Company) with a maximum applied field of 120 kOe. 
The demagnetizing field corrections were made using 
demagnetization factors taken from Ref. [9]. 

3. Results and discussion 

3.1. Ndl ,Fes4  Ti5 

X-ray diffraction measurements showed that the as- 
milled samples consisted of a mixture of a-Fe and an 
amorphc,us phase. Heat treatment of the as-milled 
powder at temperatures up to 900 °C resulted in the 
formation of the 1-7 phase, Nd(Fe,Ti)7, as the main 
phase. The 2-19 phase, Nd2(Fe,Ti)19, was formed during 
annealing at temperatures exceeding 1000 °C. The 
diffraction pattern of an NdaaFe84Ti5 sample annealed 
at 1100 ~C is shown in Fig. 1. The diffraction peaks 
are close: to those reported for the 2-19 phase [1-5]. 
A small amount of a-Fe was also present. 

Samples heat treated to form the Nd2(Fe,Ti)~9 phase 
required nitriding temperatures in the range 450-500 
°C and times of about 8 h or longer. As shown in Fig. 
1, nitriding resulted in an expansion of the Nd2(Fe,Ti)a9 
phase. The volume expansion calculated from the shifted 
peaks in Fig. 1 is in good agreement with previous 
measurements [4,5]. 

The Nd2(Fe,Ti)a9 phase was magnetically soft and 
had a cc.ercivity of about 150 Oe (Fig. 2). The mag- 
netization measured with the maximum applied field 
of 120 kOe was 125 emu g-~ (corresponding to a value 
/xoM~ = 1.23 T assuming a value of the theoretical density 
of 7.8 g cm -3 [2,3,8]). This result is close to that 
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Fig. 1. X-ray diffraction patterns of non-nitrided and nitrided 
NdwFe85Ti5 after heat treatment at 1100 °C and subsequent nitriding 
at 450 °C for 8 h. 
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Fig. 2. Hysteresis loops of non-nitrided and nitrided Nd2(Fe,Ti)w 
(the maximum applied field was 50 kOe). 
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Fig. 3. X-ray diffraction patterns of SmloFe85tis after heat treatment 
at 600, 750 and 850 °C. 

reported by Cadogan et al. [2]. The nitrided powder 
consisting of the 2-19 phase (Fig. 2) required a much 
higher field for saturation, and had a relatively low 
coercivity of 860 Oe. These observations are conse- 
quences of the high magnetocrystalline anisotropy en- 
ergy and the planar anisotropy of the compound [4,5]. 

3.2. Sm11Fe84Ti5 

For SmllFe84Tis, the X-ray diffraction patterns of 
samples annealed at 600 °C shown in Fig. 3 are char- 
acteristic of the 1-7 phase [2,3]. The 2-19 phase was 
the main phase present after annealing at about 750 
°C. Higher annealing temperatures, 850-900 °C, resulted 
in formation of the 2-17 phase. In addition a small 
amount of a-Fe was also present as shown in Fig. 3. 
The presence of a-Fe may be expected to accompany 
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the formation of the 2-17 phase since a higher Sm 
concentration is required (about 13 at.% [8]) than the 
Sm concentration (about 11%) present in the starting 
material. Vaporization of Sm occurred at annealing 
temperatures greater than 900 °C, causing the fraction 
of ~-Fe to increase. 

The Sm2(Fe,Ti)19 nitride phase was formed by ni- 
triding at temperatures of 350-400 °C. Higher nitriding 
temperatures (4"50 °C) resulted in the formation of a- 
Fe, owing to the decomposition of the 2-19 phase into 
SmN and a-Fe. The lower nitriding temperature re- 
quired to form the SmE(Fe,Ti)~9 nitride phase appears 
to be a consequence of reduced particle sintering and 
finer grain size associated with the lower temperatures 
required to form the 2-19 phase. 

Soft magnetic properties were also exhibited by the 
non-nitrided Sm~Fe84Ti5 samples after annealing as 
shown in Fig. 4. The coercivity was about 1 kOe and 
the magnetization could be saturated with a low field 
of 20-30 kOe, implying that the anisotropy energy was 
relatively low. The saturation magnetization measured 
at 120 kOe was 110.8 emu g-~. 

Nitriding resulted in a significant increase in coercivity 
as shown in Fig. 5. Samples annealed at 600-650 °C 
exhibited coercivities of 10-15 kOe associated with the 
nitrided 1-7 phase. Samples annealed at higher an- 
nealing temperatures (750-800 °C) exhibited/arc values 
of about 20 kOe associated with the nitrided 2-19 
phase. 

The initial magnetization curve for the nitrided sample 
consisting of the 2-19 phase was typical for nanocrys- 
taUine materials [8] in that the magnetization increased 
quickly in the field range of the coercivity of about 20 
kOe. the maximum magnetization measured at 120 kOe 
was 132.3 emu g-~, where the magnetization curve 
showed clearly that the field of 120 kOe was insufficient 
to saturate the sample. The anisotropy field of nitrided 
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Fig. 4. The  hysteresis loop of  non-ni t r ided Smz(Fe,Ti)~9 and the 
initial and the demagnet izat ion curve of  the nitr ided Sm2(Fe,Ti)t9. 
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Fig. 5. Coercivity of  SmtoFe85Tis nitride as a funct ion of  the anneal ing 
t empera tu re  Ta (samples  nitr ided at 400 °C for  4 h.). 

SmE(Fe,Ti)19 has been reported to be about 140 kOe 
[4,5]. By extrapolation of the magnetization vs. reciprocal 
of the field, the saturation magnetization was estimated 
to be 152 emu g-1. The remanence of 81 emu g-1 
(Fig. 4) is somewhat greater than 50% of the saturation 
magnetization, which is expected for isotropic materials 
with uniaxial anisotropy. There is some evidence that 
this material exhibits remanence enhancement as found 
in nanocrystalline Nd-Fe-B [10], Sm-Co [7] and 
Sm-Fe-N [11]. 

The decrease in Hc which occurred for annealing 
temperatures above 850 °C is associated with the pres- 
ence of a-Fe. As discussed previously the diffraction 
patterns of powders annealed at Ta >~ 850 °C showed 
a mixture of 2-17 and a-Fe phases (Fig. 3), with the 
fraction of a-Fe increasing with the annealing tem- 
perature. As a consequence, the hysteresis loops of the 
nitrided samples showed two-phase behaviour associ- 
ated with the soft a-Fe phase and the hard 2-19 nitride 
phase, with the coercivity decreasing with increasing 
fraction of a-Fe. 

M6ssbauer spectroscopy measurements of non-ni- 
trided and nitrided samples consisting of the 2-19 phase 
are shown in Fig. 6. The M6ssbauer spectra were fitted 
with five sextets and the intensity ratio as suggested 
by Cadogan and coworkers [12]. The non-nitrided sam- 
ple had an average hyperfine field of 22.4 T, and. its 
hyperfine fields spread over the range from 20.3 to 
28.1 T in agreement with the measurements of Cadogan 
et al. [3,12]. Taking the saturation magnetization of 
110.8 emu g-1 as measured at 120 kOe and assuming 
that each Sm atom carries 0.5/zB and Ti is non-magnetic 
gives an average Fe moment of 1.45/~B. The resulting 
hyperfine interaction constant of Fe moment divided 
by average hyperfine field is 15.4 T/I~B, which is in the 
range of most intermetallic Fe compounds [13]. 
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Fig. 6. M6s~bauer spectra of non-nitrided and nitrided Sm2(Fe,Ti)zg. 

The nitrided sample (Fig. 6) exhibited higher hy- 
perfine fields in the range from 28 to 35 T. Such an 
increase in the hyperfine field is expected, since the 
nitrided compound has a higher Curie temperature and 
therefore a higher saturation magnetization. The av- 
erage hyperfine field was estimated to be 30.7 T. Taking 
the hyperfine interaction constant to be 15.4 T/~B gives 
the average Fe moment equal to 1.99/zB for the nitrided 
compound. This value corresponds to saturation mag- 
netization of 150 emu g-~, which is very close to that 
extrapolated from the magnetic measurement above 
(153 emu g-i) .  

4. Conclusions 

Mechanical alloying of RlaFesaTis (R=-Nd and Sm) 
leads to the formation of a mixture of t~-Fe and an 
amorphous phase. Heat treatment of Nd~lFes4Ti5 re- 
suited in formation of a 1-7-like structure at temper- 
atures below 1000 °C and the 2-19 phase at higher 
temperatures (about 1100 °C). The nitrided compound 
could be formed after nitriding at 450 °C for periods 
of 8 h or more. 

With Srna~FesaTis, the 2-19 phase was formed after 
annealing at lower temperatures (about 750 °C). Higher 
annealing temperatures resulted in the 2-17 phase, wifh 
significant vaporization of Sm and associated formation 

of a-Fe occurring at temperatures above 900 °C. The 
optimized nitriding condition was 400 °C for 2-4 h. 

All non-nitrided samples exhibited soft magnetic 
properties. Nitriding of NmE(Fe,Ti)19 increased the 
saturation magnetization owing to the increase in the 
Curie temperature; however, the coercivity remained 
low as a consequence of planar anisotropy. 

High coercivities were observed for both the 1-7 and 
2-19 phases of the nitrided Sm~1Fes4Ti 5 samples con- 
sistent with the high anisotropy fields reported for these 
phases [4,5]. Optimum properties exhibited by nitrided 
samples containing the 2-19 phase were Hc=20 kOe 
and Mr=81 emu g-a. Using the theoretical density, 
the estimated maximum energy product was 13 MGOe. 
This ternary 2-19 compound can be considered as a 
candidate permanent magnet material. 
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